REPORT DOCUMENTATION PAGE

0132

2 REPORT DATE 05 May 99

REPORT FINAL 15 Feb 98 - 14 Feb 99

(DURIP) 98/99) INTEGRATED INSTRUMENTATION SYSTEM FOR THE DEVELOPMENT OF TONIC POLARIZED POLYMER LIGHTEMITTING DIODES 3484/US

61103D

Prof Yang Yang

The state of the s

Department of Materials Science & Engineering

University of California, Los Angeles 1400 Ueberroth Bldg., Bx 951406 Los Angeles &A 90095-1406

CONTROL OF THE SANCEATION NAME (S) AND ADDRESS(ES)

TO DE LINGUEDAING AGENCE NAME(S) AND ADDRESS(ES)

U.S. Air Force Office of Scientific Research

ATTN: Dr. Charles Lee

AFOSR/NL

801 N. Randolph Street, Ste 732 Arlington VA 22203

97-NL-405

AVAILABILITY STATEMENT DISTRIBUTION STATEMENT A Approved for Public Release **Distribution Unlimited**

Comment Company of Comments.

A major discovery of the polymer solution light-emitting device (SLED) was uncovered when studing the metal/polymer interfaces. An attempt to improve the device contact by adding solvents on top of polymer film and subsequently placing a metal contact above it. When biased, the device illuminated while the polymer film was still wet. That mechanism of this new type of device is still unclear, however its suspected that this unique device operates by an electro-generated chemiluminescence mechanism.

Polymer Diodes

UNCLASSIFIED

BOUNT CLASSIFICATION | 18 | SECURITY CLASSIFICATION U THIS PAGE

UNCLASSIFIED

UNCLASSIFIED

UL

UNIVERSITY OF CALIFORNIA, LOS ANGELES

UCLA

BERKELEY · DAVIS · IRVINE · LOS ANGELES · RIVERSIDE · SAN DIEGO · SAN FRANCISCO

SANTA BARBARA · SANTA CRUZ

DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING SCHOOL OF ENGINEERING AND APPLIED SCIENCE 405 HILGARD AVENUE 6531 BOELTER HALL LOS ANGELES, CALIFORNIA 90095-1595

TEL: (310) 825-5534 FAX: (310) 206-7353

May 5, 1999

Dr. Charles Lee AFOSR/NL 801 N. Randolph St., Rm 732 Arlington, VA 22203-1977

Dear Charles:

Enclosed please find our Fiscal Technical Report for our DURIP project. This DURIP has significantly enhanced my research capability and I would like to take this opportunity to thank you for your support. During my first two years of academic career, I am proud that we invented the hybrid inkjet printing as well as discovered the polymer solution LEDs. For research related these two inventions, the DURIP facility has made a significant impact.

You were the first program director that I visited when I joined UCLA two years ago, and you have witnessed the growth of our group. I sincerely hope that our outstanding research activity could be continuously supported by you. I can assure you that our group will become one of the best groups in the area of electronic polymers, and I hope AFOSR will play an important role in our growth.

With my best regards.

Sincerely,

Yang Yang

Final Technical Report

DURIP

Grant No. F49620-98-1-0311

Title: <u>Integrated Instrumentation System for the Development of Ionic Polarized Polymer Light-Emitting Diodes</u>

Sponsoring Office: Dr. Charles Lee AFOSR/NL 801 N. Randolph St., Rm 732 Arlington, VA 22203-1977

Prepared by

Prof. Yang Yang
Department of Materials Science and Engineering
UCLA

Los Angeles, CA 90095

Tel: (310) 825-4052 Fax: (310) 206-7353 e-mail: yy@seas.ucla.edu 19990528 065

Hardware (equipment) summary:

This DURIP grant has contributed strongly in initiating my research activity at UCLA. Being a first year assistant professor with limited initial funding for equipment, this DURIP grant helped me to equip my laboratory and allow me to initiate my research activity. Compared to the originally proposed equipment list, there have been several changes in the equipment purchased. We were able to purchase many extra pieces of equipment using this DURIP grant. One of the major reasons was due to a donation of a HP 4155A (Semiconductor Parameter Analyzer, costing \$30,000) from HP Laboratory. [1] In the original equipment list, we budgeted a HP 4155A Semiconductor Parameter Analyzer. Fortunately, this donation allowed us to purchase other urgently needed equipment. Another major change was the purchasing of a nitrogen purge-box (~\$11,000), instead of a nitrogen dry-box (~\$33,000). Due to the improvement of our device fabrication technique, we were able to fabricate devices with excellent performance under less rigorous conditions. [2] Therefore, we decided to purchase a less expensive purge-box so that the money could be used to purchase equipment with broader applications.

Within the constrains of the budget, we purchased fourteen (14) pieces of major equipment, instead of the seven (7) pieces we originally proposed. The purchased equipment is listed in Table 1 below, the equipment marked * are the additional equipment that we purchased.

Table 1: Purchasing Equipment List

Vendor	Equipment	Price
1. Newport*	818-UV/CM	\$ 564.30
	Low-Power Detector	
	1815-C	\$ 590.40
	Optical Power Meter	
	1830-C	\$ 1,639.80
	Picowatt Digital Power Meter	
2. Janis Research	VPF-475	\$ 4,985.00
Company*	Liquid Nitrogen Variable Temperature	
	Dewar	
	8-Pin Resistivity Sample Holder	\$ 185.00
	Upgrade to Refill Assembly	\$ 370.00

	Wiring from Extra 8-Pin and BNC Feedthrus	\$ 250.00
	to Sample Mount	
	Neocera Model LTC-11	\$ 2,610.00
	Temperature Controller	
3. Tucker Electronics*	TEKTDS430A	\$ 4,345.65
	Digital Storage Oscilloscope	
4. Photo Research Inc*	2900-0047-00Z	\$10,815.00
	PR-650 Spectracolorimeter	
	(117VAC USA-PLUG)	
	8500-0001-45Z	\$ 1,700.00
	MS-2.5X Microspectar Lens, Calibrated	
	MS-2.5X Lens Replaces MS-75	-\$ 1,340.00
5. Chemat Technology,	KW-4A(110V)	\$ 2,945.00
Inc.*	Spin Coater, 1/2 Diameter Chuck	
	Handle (Costume Made Box)	\$ 30.00
6. Vacuum Atmosphere	HE-43-2	\$ 7,720.00
company	Dri-Lab, work station	·
	DLS-S	\$ 790.00
	Dri-Lab Support stand	
	HE-303	\$ 200.00
	Fluorescent skylight	
	ACR-2	
	Antechamber Instrument Mounting Rack	
	PC-1	\$ 1,215.00
	Pedatrol. Automatic pressure Control	
	MPC	\$ 1,200.00
	Manual Purge Control	
	HE-503-1	\$ 205.00
	Shelf Assembly	
	8B1532 L&R	\$ 155.00
	Buthyl Rubber Gloves	
	AC-4A	\$ 1,600.00
	Mini-Antechamber	
	Academic Discount	-\$ 1,963.00
7. Pumps International,	D25B(20CFM)	\$ 9,001.50
Inc.*	Hydrocarbon Filled Vacuum Pumps (3EA)	
8. Brookkfield*	Programmable LVDV-II+CP	\$ 3,385.00
	Digital, Calculating Cone/Plate Viscometer	
9. Oriel Instruments*	14432	\$ 34.00
	4 Inch Rod Holder	
	60056	\$ 3,955.00
	Arc Lamp Source	
	71260	\$ 227.00
	Quick Change Filter Holder	

	56531	\$ 433.00
·	Int. Filter	
	77800	\$ 355.00
	Fiber Optic Assembly	
	77564	\$ 723.00
	STD Grade FS Bundle	
	77646	\$ 152.00
	FS Focusing Beam Probe	
	77612	\$ 37.00
	RD Mount Probeholder	
	12350	\$ 20.00
	Standard Rod 6.0 Inch	
10. Vacuum	HE-493/MO-5	\$ 4,720.00
Atmospheres Company	Dri-train	
11. March*	CAM-F1	\$ 7,500.00
	Contact Angle Measurements	
12. A.G.Heinze	Nicon E800 Optical Microscope	\$41,864.20
13. Labsphere*	RSA-HP-8453	\$ 4,975.00
	Reflectance Spectroscopy Accessory	
14. Hewlett Packard	8453A UV-Vis Spectrometer G1110AA	\$10,500.00
	System	
Total equipment cost		\$128,693.85

Research and Education Summary:

Our proposed research focuses on investigating the metal/polymer interfaces of polymer LEDs. We have identified an effective method to fabricate ohmic contacts in polymer LEDs. An ohmic contact can be formed by first doping the polymer surface prior to the evaporation of the metal electrode. The formation of the ohmic contacts significantly enhances the device performance. One manuscript has been published on this subject. [2]

However, there is another major (or unexpected) achievement is the discovery of the polymer solution light-emitting device (SLED), which was discovered when we were studying the metal/polymer interfaces. One of our students, Shun-chi Chang, tried to improve the device contact by adding solvents on top of polymer film and subsequently placing a metal contact above it. When biased, the device illuminated while the polymer film was still wet. The mechanism of this new type of device is still unclear, however it suspected that this unique device operates by an electro-generated chemiluminescence mechanism.

There are many advantages associated with the SLED. The device has the potential of being a very efficient LED since it is not limited by the singlet recombination rules. Other significant advantages are the simplicity of device fabrication, large area processing capability, and pin-hole free nature. The SLED is also a self-encapsulated

device since it does not require a capping layer; the top ITO/glass plate serves as the capping layer. The edge sealing can be also be done by the regular fusion of glass and by taking care to include orifices in the edges for the introduction and removal of the polymer solution. Due to the use of dual ITO/glass substrates, the SLED is a highly transparent device. Finally, the low cost of fabrication and minimal wastage of polymer solution will be attractive features for future practical applications.

The equipment acquired via this DURIP program also helps the training of all our students. For example, Mr. Shun-chi Chang is an outstanding graduate student. Within one year, Chang has published as first author, three papers and filed one patent. [3,4,5,6] Mr. J. Bharathan, who recently obtained his master degree, also has two first authored paper published. [2,7] Another student, Guo, who recently joined our research group, has also demonstrated some outstanding results after only one month of participation in this project.

Under this program, students undergo a comprehensive training in science and engineering and we are proud to present their results to AFOSR through this technical report.

Reference:

- 1. Dr. Ron Moon, Manager, HP Photonic Laboratory.
- 2. Jayesh Bharathan and Yang Yang, "Metal polymer interface and the device performance of polymer light-emitting diodes", J. Appl. Phys., 84, 3207,1998.
- 3. S.C. Chang et al., "Multicolor organic LEDs processed by inkjet printing", Advanced Materials, in press.
- 4. S.C. Chang and Y. Yang; "Polymer solution light-emitting devices", 74, 2081, Appl. Phys. Lett. (1999).
- 5. S.C. Chang, J. Bharathan, and Y. Yang; "Dual-color polymer LEDs processed by hybrid inkjet printing technology", 73, 2561, Appl. Phys. Lett. (1998).
- 6. S.C. Chang and Y. Yang, Polymer solution light-emitting device, US Patent Pending.
- 7. Jayesh Bharathan and Yang Yang, "Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo. Appl. Phys. Lett. 21, 2660, (1998).